
Journal of Statistical Physics, Vol. 57, Nos. l/2, 1989 

Wiener Sausage Volume Moments 
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The statistical characteristics of a spatial region visited by a spherical Brownian 
particle during time t (Wiener sausage) are investigated. The expectation value 
and dispersion of this quantity are obtained for a space of arbitrary dimension. 
In the one-dimensional case the distribution of probability density and the 
moments of any order are determined for this quantity. 
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1. I N T R O D U C T I O N  

In the theory of random processes the spatial region visited by a spherical 
Brownian particle during time t is known as the Wiener sausage. (1'2) Its 
volume is important in an analysis of a number of physical processes. The 
average value of this random quantity was calculated for the first time in 
a pioneering work (3) for the two-dimensional case. In the present study we 
investigate the statistical characteristics of the Wiener sausage volume in a 
space of arbitrary dimension. The results are described in the following 
order~ Sections 2 and 3 deal with the determination of the expectation value 
and dispersion of the quantity under consideration at asymptotically large 
times. A one-dimensional case is analyzed in Section 4, where the distribu- 
tion probability density and the moments of any order are calculated. The 
concluding Section 5 contains a discussion of the relationship between the 
volume of the Wiener sausage and the number of different sites visited by 
a random walk on a lattice. 

2. AVERAGE V O L U M E  OF A WIENER S A U S A G E  

Let us consider a spherical Brownian particle with a radius b. We 
introduce (p(r, W,), which is a function of the position r of the point in 
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d-dimensional space and a functional of the Wiener trajectory W, of the 
particle center observed during time t: 

q~(r, Wt)={l 0 if minlr-rw, l~<b (1) 
if min I r - r w ,  I > b  

where rw, e Wt. This makes it possible to determine the volume of the 
Wiener sausage that corresponds to a given trajectory Wt in the form 

v(W,) = f ~p(r, W,) ddr (2) 

The random value v(W,) is distributed with the probability density 

F,(v) = <6(v-v(W,)) ) (3) 

The symbol ( . - . )  stands for the average with respect to the Wiener 
trajectories. (4'5) The function F,(v) is normalized with respect to unity; and 
at the starting moment t =  0 it is 6 (v -v0) ,  where Vo = rra/2bd/F(1 + d/2) is 
the volume of the Brownian particle. 

In accordance with definitions (1)-(3), the average vohrme of the 
Wiener sausage is 

f(t)= f vF,(v) dr= (v(W,) ) = f <~o(r, IV,)> dar (4) 

The quantity (q~(r; W,))  is the portion of the trajectories which during 
time t visited the b neighborhood of the point r at least once. This quantity 
equals the probability of the death during time t of a Brownian point par- 
ticle in the sink of radius b around the r point. The survival probability of 
such a particle is an integral over the whole space of the probability density 
of finding the particle at the point r '  at moment t - - the Green function 
G(r', 0. 2 This function obeys the diffusion equation 

aG/Ot = D AG (5) 

(where D is the diffusion coefficient), the initial condition 

G(r', 0) = 6(r) (6) 

and the boundary conditions 

G ( l r - r ' t  =b ,  t ) = 0 ,  G ( ~ ,  t ) = 0  

2 Without loss of generality, we assume that the particles start from the origin of the coor- 
dinates at the moment t = 0. 
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It is convenient to express the results of the calculation of (q)(r; W,)) 
in the following form: 

(q~(r; W,)) = O(r - b) u(r, t) + O(b - r) (7) 

Through the Heaviside step function O(x), Eq. (7) reflects the fact that the 
falling of the starting point of the particle into the sink results in its instant 
death. Here we have 

u(r, ~)=-~2 (!)V fo l-exp(-D')y 

Jr(Y) Nv((r/b) y) - Jv((r/b) y) N~(y) 
x j2(y) + NZ(y) dy (8) 

where v = ( d -  2)/2, ~ = Dt/b 2, and Jv and Nv are Bessel functions of the 
first and second kinds of order of v. By substituting Eq. (7) into Eq. (4) and 
integrating, 3 we obtain 

g(z)=vo {l +dlr(d-2)O(d-2)+ 4 fo l-exp(-~x2)dxl}  -~ J~(x) + NZ(x) -~ (9) 

This equation determines the average volume of the region in 
d-dimensional space visited by the Brownian particle during time t. When 
d =  1, 3, Eq. (9) acquires an especially simple form: 

(+2) 
~(r)=Vo 1 x / ~  when d = l  (10) 

~ ( r ) = v o ( l + ~ 6  ~ + 3 z )  when d = 3  (11) 

Next we analyze the g(r) dependence. At small values of time 

r ~ 1 / (d -  1) 2 when d>~2 (12) 

the asymptotic f(r) is universal: 

E l 1 o e )  

This reflects the one-dimensional nature of'the Brownian motion at these 
moments in a space of an arbitrary dimension. According to Eq. (12), the 

3 It is convenient first to integrate over the volume of the Laplace transform [Eq. (7)] and 
then to carry out the reverse Laplace transformation. 

822/57/1-2-22 
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time interval where this holds true is the smaller, the greater the dimension 
of the space. 

Of special interest is the behavior of g(z) at large time values, ~ >> 1. 
In a two-dimensional case the quantity under consideration can be repre- 
sented in the form of an asymptotic series (we perform an inverse Laplace 
transformation by a special method (6)) 

4z u Aj 
v ( z ) ~ - V ~  j~o ln  j fi'c (13) 

where / ~ = 4 e x p ( - 2 C ) - 1 . 2 6 1 ;  C-~0.577 is the Euler constant; and the 
coefficient A/are  described by the following equation: 

d'F ] 
Aj= dx j [_F(1 - X ) J x =  -1 

In particular, Ao = 1, A1 -~ 0.423, A 2 -~ 0.466, A 3 -~ 1.147, and A 4 -~ -0.589. 
For N =  2, Eq. (13) coincides with the known result. (3) For d~> 3 the main 
term of the asymptotics of for large time values becomes universal: 

g(z) ~- v o d ( d - 2 ) z  (14) 

The calculation of the Wiener sausage volume dispersion requires that 
account should be taken of the correction terms. From Eq. (9) it follows 
that 

~(~)~vo. SzIl+lnfl,+2C+l ln/3, ( ~ ) ]  
W -  - s E - -  + + ~  ' 

d = 4  (15) 

~(~) ~- rod (d -  2)r [1 - - - + o  , d>~5 (16) 
+ d ( d -  4) z 

Thus, the g(z) function for large time values in spaces of different 
dimensions has the following form. The main term of the asymptotics 
increases with time as ~1/2 in the one-dimensional case; as r/ln z in the two- 
dimensional case; and is proportional to r for d>~ 3. The correction term 
for the linear dependence g(r) (d/> 3) increases as ~1/2 in three-dimensional 
space; it increases as in ~ in the four-dimensional case; and for d > 5  is 
independent of time, decreasing with an increase in the dimension of space. 
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3. V O L U M E  D I S P E R S I O N  OF A W I E N E R  S A U S A G E  

Next we calculate the second moment of the volume of a Wiener 
sausage, v2(t). According to the definitions in Eqs. (1)-(3), 

v-2( t) = I v2F'(v) dv = (v2(W~) ) 

= f  ((p(r 1, W~) ~o(r2, Wt)) darl ddr2 (17) 

The quantity (q)(rt, Wt) ~P(r2, W,)) is the portion of the trajectory which 
during time t has visited at least once the b neighborhood of both the 
r~ and the r 2 points. This quantity can be expressed through the death 
probability of a particle in a one-sink and a two-sink situation. To do this 
we express the quantity in the form 

(~p(rl, W,)q)(r2, W t ) ) =  (~o(r~, W~))+ (q)(r2, W,)) 

- { 1 - ( [ 1 - ~ o ( r , ,  Wt)][1-cp(rz ,  W,)])}  (18) 

The first two terms on the right-hand side of this equation are equal to the 
death probability of a Brownian point particle during time t on one sink 
of radius b located at r l and r2 points, respectively. The quantity in braces 
is the death probability of the particle during the same time in a two-sink 
situation. Indeed, the average quantity ( [ l  - q~(r~; W,)][I  - ~p(r2; W,)] ) 
represents the portion of a trajectory which during time t does not visit the 
b neighborhood of either the rl or the r 2 point. This quantity is equal to 
the survival probability of the particle in the presence of two sinks located 
at the r~ and r2 points. 

The death probability of a particle in a one-sink situation is known 
[cf. Eq. (7)]. In a two-sink situation it has been impossible to calculate the 
death probability for an arbitrary position of the sinks. However, we do 
not need the death probability itself, but an integral of it taken over 
different configurations of the sinks. At large time values (r ~> 1) the main 
contribution to the integral comes from the configuration in which all the 
characteristic lengths considerably exceed the dimension of the sink, i.e., 

r~>b; r2~b; R = l r l - r 2 [  >>b (19) 

For these configurations an approximate calculation of the death proba- 
bility of the particle is possible. This makes it possible to elucidate the 
behavior of the mean square volume of a Wiener sausage at large time 
values. 
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The calculations presented in the Appendix show that for a two-sink 
situation which satisfies the conditions (19), the Laplace transform of the 
particle's death probability during time t, 

u ( r , ,  r2 ,  0 = 1 - < E l  - ~0(< ,  w t ) 3 [ 1  - ~ ( r 2 ,  w , ) ] >  

is approximately equal to 

(,oo 

u(r,,r2, s)=Jo u(rl,r2, t) e x p ( - t s ) d t  "~u(rl 's)+u(r2's)  (20) 
1 + su(R, s) 

Here, u(r, s), the Laplace transform of the u(r, t) function [-Eq. (8)], is 

s K~((sbZ/D) ~/2) 

where Kv(z) is the MacDonald function of order v. We shall utilize Eq. (20) 
for any configuration of a pair of sinks, including those for which the con- 
ditions (19) are not fulfilled. A rough estimation shows that in so doing an 
error of the order of VoO(t) occurs in calculating v2(t). 

According to Eqs. (17), (18), and (20), the Laplace transform of the 
second moment of the volume of a Wiener sausage for s ~ D/b 2 has the 
following form: 

r su(brl - r2], s)[u(rl, s) + u(rz, s)] V2(S) ddrl ddr2 J 1 + su( Ir , -  r2[, s) 

Since with the accepted precision 5 u(r, s) ddr ~- ~(s), then 

- -  su(R, s) 
v 2 - 2iT(s) f 1 + su(R, s) daR (21) 

Equation (21) makes it possible to find the v2(t) function at large t m 
spaces of different dimensions. 

We shall use this possibility for calculating the volume dispersion of a 
Wiener sausage: 

O.2(/) = /22(t) - -  ~(/,)2 

For the one-dimensional case it follows from Eqs. (10) and (21) that 

v-Z(z) -~ v212z In 2 + O(x/7)]  (22) 

2) 
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It should be noted that the main terms in these equations coincide with the 
result of a precise calculation carried out in the following section. 

In the two-dimensional case, after performing an inverse Laplace 
transformation [Eq. (21)] by a special method, (6/ we obtain the represen- 
tation v2(r) in the form of an asymptotic series: 

--  16z 2 ~ Bj 
v2(r) ~ v~ ~ '-" In j fir (24) 

j = 0  

It is more cumbersome to calculate the coefficients of these series than to 
calculate the coefficients of an asymptotic series [Eq. (13)] for ~(z). We 
have calculated the first four of them, which are necessary for obtaining the 
main terms in the dispersion: 

B0=l ;  B l = 2 A ~ = 2 ( 1 - C ) ~ - 0 . 8 4 5  

Here, ~(n) is the Riemann zeta function, and In = S~ xnK;(x) dx. The quan- 
tities I3 and /4 have been determined numerically(7~: I3-0 .586 and 
14 ' ~  1.052. The expression for the dispersion follows from Eqs. (13) and 
(24): 

2 16r2 u E; (25) 0"2(r) 
u o 

I n  4 f i r  jL  o= i n s  f i r  

The first two coefficients of this asymptotic series are 

E 0 = 413  - (7c2/6  - 1 ) "~ 1.699 

E I = 4{ [~(3) -  1] + (~z2/6 - I)A, +2/4-213(1 +B, )}  -~ 1.662 

In the three-dimensional case, Eqs. (11) and (21) yield 

v2(r )~v~gr  2 1 + ~ +  + O  (26) 

2gz In r[1 + O(1/ln ~)] (27) ~2(r) -~ Vo 

For d =  4 the asymptotics for large time" values, g2(r), has the follow- 
ing form, according to Eq. (21): 

v2(z) ~ v~.64z 2 1 +-~--T + 0 (28) 
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The main terms of this equation and those of the relationship that follows 
from Eq. (15) for g(z) coincide. In this case the approximation used by us 
turns out to be too crude for calculating the dispersion of o-2(z), since the 
role of the configurations where the sinks are close to one another is no 
longer a small one. Thus, we find that the quantity of the order of VoO(Z) 
is an upper bound for the dispersion. Let us estimate a lower bound of the 
quantity under consideration. This quantity is served by the dispersion 
calculated on the assumption that the volume of a Wiener sausage is a 
random quantity with independent increments. The dispersion in this case 
is proportional to r. A comparison of the two estimations indicates that at 
d = 4  

a2(z)~v~z (29) 

In accordance with Eqs. (16) and (21), the same situation holds for spaces 
of greater dimensions. 

Thus, the behavior of the main asymptotic term of a2(~) at large time 
values in spaces of different dimensions follows the dependence 

o2(~) = ~ ( ~ )  

where ~b~(z) is a constant value for d =  1 and d>~ 4, and is proportional to 
z/In4 z for d =  2 and to in z for d =  3. 

The time dependence of the relative fluctuation of the Wiener sausage 
volume 5 ( r ) =  (r(r)/g(r) makes it possible to judge the correlation of the 
increments in the volume visited by a Brownian particle at different 
moments. When they are independent, this quantity is proportional to 
1/'~ 1/2. This is exactly how 5(~) behaves when d>~4. Starting from d =  3, 
~(~) increases with a decrease in the dimension of space. It is proportional 
to (ln r/z) 1/2 for d =  3 and to 1/ln z for d--  2, and is independent of time for 
d =  1. This circumstance reflects the significant role of self-intersections of 
a Wiener trajectory in a low-dimensional space. 

4. O N E - D I M E N S I O N A L  CASE 

In the one-dimensional case the analog of the volume of a Wiener 
sausage corresponding to the trajectory of the center of a particle with 
dimension 2b is the amplitude of the particle's motion L 

L - v(W,) = 2b +/1(mr)  +/2(mr) (30) 

where l~(W,) and/2(Wt)  are the maximal distances from the starting point 
to the left and right, respectively, of the particle's center. Let us calculate 
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the distribution of the probability density of the quantity L, F,(L). Accord- 
ing to definitions in Eqs. (3) and (30), we have 

F,(L) = (6(L - 2b - [/~(W,) + 12(W,)])) 

;o;o = 6(L-2b-( lx+12))O,( l , ,12)dl~d12 (31) 

Here, ~,(l~, l:) dl~ cll2 is the portion of the trajectory for which the maximal 
deviations of the particle's center during time t to the left and right of the 
starting point are l~ and 12, respectively. The probability density ~,(1~, 12) 
can be conveniently represented in the form 

02pt(ll, 12) 
r ~2) (32) 

8li Olz 

where P,(l~, 12) is the probability that the particle starting from the origin 
of the coordinates will not leave the interval ( - ( l l  +b), (12 +b))  during 
time t. This quantity is the integral over the interval ( - l~ ,  lz) of the 
solution of a one-dimensional diffusion equation [Eq. (5)] which satisfies 
the initial condition in (6) and the boundary conditions G(- l~ ,  t )=  
G(12, t )=  0. This quantity is 

P,(ll, 12) = P,(I = l~ + 1 2 ,  AI = l 1 - 12) 

4 ~ cos[XTr(2m - 1)(AI/I)] 
2. ~zm= 0 2m+ 1 

e x p l  7r2Dt 1)2] 
12 (2m + 

By using the definitions in Eqs. (31) and (32), it can be shown that 

62 
F,(L + 2b) = ~-~ [LP,(L)] 

where 

P , ( L ) = l  f L P,(L, AI)dAI 
L 

= ~5 m~0 (2m + 1)2 exp L2 (2m + 1 )2 

Since Pt(L) depends on both the L and t arguments only through their 
dimensionless combination y = L/Tr(Dt) ~/2, it is convenient to express the 
probability density of the L amplitude through the probability density of 
the dimensionless quantity y 

1 
F,(L + 2b) ~z(Dt)l/~f(y ) 
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where 

f(y)=~fSm= ~ f~ (2 rn+ l )2 - -1  exp y2 (33) 

This expression is convenient for analyzing the behavior of f(y) at small 
values of y. The Poisson summation formula makes it possible to express 
f(y) in the form of a series: 

m ~ l  
(34) 

which rapidly converges at large y. From Eqs. (33) and (34) it follows that 

(32 1 [ 1 ) 
f (y )  ~ t~ -7~  exp ~ -  ~5 when y ~ l  

( 4~ 1/2exp _ 4 _ y 2  when y>>l 

Next we calculate the moments of the amplitude of a particle's Brow- 
nian motion. These quantities are linked to the moments of y through the 
relationship 

M j ( t ) : f o  UF,(L) dL:(2b) j ~ cf \ ~ - ]  j ~r k (35) 
k=O 

where 2Er k = ~f ykf(y) dy is the kth moment of the quantity y, and c~ is 
the binominal coefficient. From Eq. (35) it follows that at times t>> b2/D 
the moment of the j th  order is proportional to (Dt) j/~. By using Eqs. (33) 
and (34) we can determine all the moments of the y quantity. The results 
of the corresponding calculations are 

4 8 ln2 
J~O = 1 ; J~(1 ~---- 7~3/2 ; M 2  - ~2  

4 (2)9( ~/4"]F(J+ 1"] 
Mj = .,/~-7 1 - gS. \ - - ~ ]  ~(J-- 1 ) if j >~ 3 

(36) 

The first relationship in (36) reflects the normalization per unit of the 
probability density F,(L) and f(y). The second relationship leads to 
Ml(t) = L(t), a quantity which coincides with that calculated in Section 2 
[Eq. (10)]. Relationships (35) and (36) make it possible to calculate the 
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moments and cumulants of the quantity L of any order. In particular, for 
the dispersion we obtain 

a2( t )=8  In - ~  Dt~-O.452Dt (37) 

This precise expression coincides with the main term of the asymptotics for 
large time values ]-Eq. (23)] obtained in Section 3. 

Thus, in the one-dimensional case it is possible to calculate completely 
the statistical characteristics of the Wiener sausage volume: the distribution 
function of this quantity, Eqs. (33) and (34), and the moments of any 
order, Eqs. (35) and (36). 

5. CONCLUSION 

The motion of the center of a Brownian particle corresponds to a 
random walk on the lattice, the number of steps n o f  which is large, 
n >> 1. (8) During time t such a walk will accomplish 

n =  2d(Dt/l 2) (38) 

steps on a d-dimensional simple cubic lattice with a period/.  Here the walk 
will visit R n different sites. It may be expected that Rn and the volume v 
visited by Brownian particles with a radius b >> l are related to one another. 
We shall discuss the question in more detail. 

In the one-dimensional case the volume of a Wiener sausage according 
to Eq. (30) differs from the amplitude of the movement of the particle's 
center only by 2b: 

v = L = 2b + lRn (39) 

It is known (7) that for n > 1 

/~n_ ~ , an---4 l n 2 -  n 

Taking account of these dependences and of the relationships (38) and 
(39), we get the same a2(v) and zS(r) as obtained in our calculations [cf. 
Eqs. (10), (37)]. 

In the d-dimensional case (d>~2) the situation is not so obvious. To 
analyze it, we shall compare the average values of the quantities under 
consideration. The asymptotics for large n values of the expectation value 
Rn is(7'9 11) 

~'~z(n/ln n) when d = 2  
, . . , . ,  (40) "3 (:r when d~> 3 
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where ee is a constant which depends on the dimension of the space; 
~3 -~ 0.718.(7) At times t> bZ/D (n >~ b2/I2), when the volume visited by a 
particle considerably exceeds its own volume, V>Vo, Eqs. (38) and (40) 
make it possible to express the average volume of a Wiener sausage 
[Eqs. (11), (13), and (14)] in the form 

v(r) ~ ?aba- 2Rnl 2 (41) 

where 7d is a numerical multiplier which depends on the dimension of the 
space; 72 = 1 and Y3 -~ 2.917. 

In the two-dimensional case, as follows from Eq. (41), the volume 
visited by a particle is independent of its dimension and is determined only 
by the number of different sites visited by the particle's center. The visit by 
the center of each new site is accompanied by an increase in the volume of 
the Wiener sausage volume by dr, which on the average equals the volume 
of the lattice cell l 2. Thus, the situation here is the same as in the one- 
dimensional case. This is explained by the fact that in low-dimensional 
space (d = 1, 2), due to the large number of self-intersections, the trajectory 
of the particle's center tightly fills the entire region visited by the particle. 4 

Important for an interpretation of the relationship (41) in spaces of 
higher dimensionality (d~> 3) is the fact that the fractal dimension of a 
Wiener trajectory equals t w o .  (2) This means that the characteristic trajec- 
tory of the particle's center tightly covers a certain two-dimensional sur- 
face, the average area of which, Rnl2= 2d~aDt, depends on the dimension 
of the space. A typical Wiener sausage is a region formed as the result of 
the "growth" of this two-dimensional surface by a magnitude of the order 
of b in each of the d - 2  directions that are orthogonal to the surface. This 
explains the dependence of 15(~) on the radius of the particle in Eq. (41). 

If the quantities v and R, were proportional to one another, as in the 
one-dimensional case [Eq. (39)], the ratio of their dispersion would be 

2 for n > l  equal to the square of the ratio O(r)//~n- The dependence a n 
is(7,9 11) 

~ 16.768n2/ln 4 n when d = 2  

~n ~- 0.215nlnn when d = 3  (42) 

L~an when d~>4 

where aa is a constant which depends on the dimension of the space. It can 
be seen that, according to Eqs. (25), (27), (29), (38), and (41), we have 

~2(r)/~r 2, ~'1 when d = 2  

[ U ( ' [ ) / . l ~ n ]  2 = ] qa(b/l) 2 when d>~ 3 

4 It should be borne in mind that the probability of a return in the one-dimensional and the 
two-dimensional cases equals unity, la2) 
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where t/d is a constant (r/3 = 14.387). Thus, only in low-dimensional space 
(d=  1, 2) are the volume of a Wiener sausage and the number of different 
sites visited by a random walk proportional to one another. 

APPENDIX  

We shall calculate the death probability of a Brownian point particle 
during time t >> b2/D in the presence of two sinks the configuration of which 
is determined by the conditions (19). This probability is defined as 

u(rl, r2, t ) = u ( r l ,  t l r2)+u(r2 ,  t l r l )  (AI) 

where u(ri, t lrk) is the probability of the particle's death on the sink 
located at ri in the presence of one more sink located at rk (i, k = 1, 2). The 
conditional probability u(r~, t lrk) is always less than the unconditional 
probability u(r~, t) introduced above [cf. Eq. (8)]. The latter is charac- 
terized by the death of the particle in a situation with one sink. The 
difference between them is the probability of the particle's death during 
time t in only one sink at r~ under the conditions of a preliminary visit by 
the particle to the b neighborhood of the rk point. 

Next we shall determine the approximate magnitude of this quantity. 
The probability that the particle will first visit the b neighborhood of the 
r k point in the interval (t', t' + dt ' )  is [~u(r k, t"lr~)/Ot']  dr'. The probability 
of its death after this toward the moment t is approximately u(R,  t - t ' ) ,  
where R =  rr~-rkl. The approximation consists in placing the particle 
visiting the b neighborhood of the r~ point at t' at the very point rk. For 
the magnitudes of the ri and rk considered here the error arising in this case 
is small. An integration with respect to all possible magnitudes of t' 
(0 < t ' <  t) determines the quantity sought. Thus, we obtain 

" Ou(rk, t'l ri) 
u(ri, t) - u(ri, tJrk) -~ ~ u(R,  t -  t ') dt' 

o ~t' J 
(A2) 

By using the Laplace transform, we obtain from Eq. (A2) a system of 
linear equations for the unknown quantities u(ri, s lrk): 

u(r,, s lr~) + su(rk,  s tri) u(R,  s) = u(r,,  s) 

Its solution has the following form: 

u(ri, s) - su(R, s) u(r k, s) 
u ( r i ,  Slrk) - -  1 - -  s 2 u 2 ( R ,  s )  (A3) 

From Eqs. (A1) and (A3) we obtain Eq. (20) (see Section 3). 
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NOTE ADDED IN PROOF 

Thanks to the referee we found out about  the recently published 
paper: J.-F. Le Gall, Ann. of Probability 16:991 (1988), as well as about  the 
papers: F. Spitzer, Z. Wahrscheinlichkeitstheorie und verwandte Gebiete 
3:110 (1964) and R.K.  Getoor,  Z. Wahrscheinlichkeitstheorie und 
verwandte Gebiete 4:248 (1965). These papers are devoted to the same 
problem but in a more general form. The solutions presented in these 
papers fully agree with the results obtained by us. Lower generality of the 
problem statement enabled us to carry out a more detailed study on some 
of the values considered. In particular, the mean value of the Wiener 
sausage volume at the arbitrary time instant was  found but not only the 
asymptotics of this value with t ~ oo calculated in the above mentioned 
papers. Besides, our method of calculation of the moments  of the Wiener 
sausage volume is different from the methods used in the papers of Spitzer, 
Getoor  and Le Gall. 

We thank the referee and the editor who have sent us a xerox copy of 
Le Gall 's paper. 
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